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A constitutive equation for concrete 
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Department of Mechanical Engineering, Durland, Kansas State University, Manhattan, 
Kansas 66506 USA 

A more rational approach to strength criterion development for concrete is proposed to 
cover the composite nature and complex failure mechanism of concrete materials. The use 
of scalar valued function theory as applied to concrete failure prediction is demonstrated. 
The results are applicable to general brittle materials 

1. Introduction 
The characteristic properties of concrete have been 
shown to be those of a complex, multi-phase material 
which is best studied as a composite. The physical 
properties in the final state (hydrated state) depend on 
the original mixed proportions and the environmental 
conditions during cure. Real concrete is, in general, 
non-homogeneous, anisotropic, and non-continuous, 
as it is composed of groups of elements formed into 
a large number of discrete particles. However, there is 
a dimensional level of aggregation (the phenom- 
enological or engineering level) at which the concept 
of the structural element can be replaced by a homo- 
geneous, isotropic, continuous medium composed Of 
structural elements of identical properties. The mech- 
anical characteristics of concrete are best idealized at 
the macroscopic level for engineering design applica- 
tions. The assumption of homogeneity can be justified 
only on a statistical basis after consideration of the 
average properties of the elements in the body. 

The failure for concrete has been shown to be in- 
itiated by numerous microscopic flaws or cracks in- 
herent within the concrete matrix. The average influ- 
ence of these microscopic flaws, as viewed from mac- 
roscopic theory, reveal distinct levels of change in the 
mechanical behaviour of concrete. As the stress level 
increases, the mechanical behaviour changes from 
quasi-elastic to plastic, with two distinct points of 
departure. The initial discontinuity begins at the onset 
of stable fracture propagation while the ultimate 
strength is reached at the onset of unstable fracture 
propagation. The hydrostatic (spherical) and devi- 
atoric components of the localized stress have been 
shown to delay and propagate the internal crack 
growth, respectively. 

The development of a strength criterion for a mater- 
ial depends on its stress state at or during failure 
conditions; either it is brittle or ductile. Consideration 
of mechanical response and failure mode shows that 
concrete is best classified as a brittle material for 
normal hydrostatic pressure. The strength character- 
ization of most brittle materials depends on the hy- 
drostatic as well as the deviatoric component of stress, 
while the characterization of the ductile material is 
independent of the hydrostatic component. 

Most strength criteria presented in previous papers 
follow functional form, which are functions of stress 
tensors. The strength criteria presented in these papers 
show poor agreement with experimental results. The 
theories presented often require given material prop- 
erty co-ordinate systems, and are not invariant, and so 
require complex methodologies for characterization of 
material parameters. These criteria have, for the most 
part, been formulated within the framework of classi- 
cal theories of plasticity which are subject to a number 
of strong constraints. These approaches lack general- 
ity and agreement with physical laws. 

In recent years, as complex, anisotropic, fibre- 
reinforced composites have been developed, more ap- 
propriate methods for the characteristics of materials 
have been sought. In the field of non-linear continuum 
mechanics there have been continuous developments 
following more powerful approaches to these prob- 
lems. In reviewing the recently proposed general 
strength criteria, the continuum mechanics approach 
has been most prominent. The application of general 
and explicit tensor based scalar-valued or tensor- 
valued functions has proven to be highly useful for 
developing strength criteria and constitutive equa- 
tions. Many investigations have shown the value of 
using tensor function theory in these applications. 

The composite nature and complex failure mecha- 
nism of concrete dictate a need for a more rational 
approach to strength criterion development. The pur- 
pose of this study is to demonstrate the utility of 
a scalar valued function theory as applied to concrete 
failure prediction. The general results are applicable to 
any quasi-elastic brittle material, but for the purpose 
of concrete characterization a specific strength cri- 
terion for concrete is developed. 

2. Development of the Proposed 
Strength Criterion 

The development of a strength criterion for the predic- 
tion of ultimate strength of concrete under multiaxial 
loadings should be formulated from the systematic 
theories of modern continuum mechanics. The cri- 
terion should be validated by accurate experimental 
data for the determination of the failure surface for 
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concrete. A strength criterion to predict the failure of 
concrete is by necessity governed by the failure mecha- 
nisms. These failure mechanisms must be related 
mathematically, and yield a failure surface in a stress- 
space. 

The tensor functional technique of non-linear con- 
tinuum mechanics is the most logically applicable to 
the formulation of the strength criterion. Such func- 
tionals satisfy the requirement of invariance for 
a group of orthogonal transformations specific to the 
material symmetry. In addition, tensor function the- 
ory allows inclusion of any number of stress interac- 
tion terms, which gives the theory a broad applicabil- 
ity to the characterization of anisotropic material. The 
tensor functional technique for the development of 
a strength criterion is a new approach which produces 
a rational criterion. 

A strength function has been shown to be express- 
ible as 

f ( (7 i j )  = I i , j ,  = l, 2, 3 (1) 

where cr u is a stress tensor referred to an arbitrary 
coordinate system. The form of the failure function in 
Equation 1 has been followed by past investigators. In 
general; the strength criteria presented were functions 
of the applied stress which were non-invariant, i.e. 
William and Warnke [1], Wastiels [2, 3], Kotsovos 
[4], and others. 

A strength function for a given material symmetry 
(isotropic for concrete) must be invariant under 
a complete point group of transformations of coordi- 
nates, {hi}, which associate with the group of material 
symmetry. This ensures that the strength criterion is 
a scalar (invariant under the appropriate group of 
coordinate transformation), and is a single-valued 
function, as indicated by Equation 1. It is known that 
failure is a physical phenomenon which is totally inde- 
pendent of co-ordinates. Thus the requirement of in- 
variance states 

f ( 6 u )  = f((7ii)  i,j = 1,2,3 (2) 

where (6ij) represents the transformed stress compo- 
nents 

(Yij = tirtjs(7rs i , j , r , s  = 1,2,3 (3) 

Invariant quantities for each class of anisotropic ma- 
terials have been obtained by Smith and Rivlin [5], 
and Huang [6]. Huang determined the second, fourth, 
and sixth order of invariant quantities in the three- 
dimensional case for each of the crystal classes from 
consideration of invariant transformations of the 
strength function. The invariant quantities for the 
isotropic material symmetry case are as follows 

1(1) = ~i + (7z + (73 
I(22) = - ((71(52 + (72(73 + ~3(71) (4) 

1(3) ~--- (71 (72 (73 

where I} i) is thej-th invariant quantities of i-th degree. 
The strength function for an isotropic material in 

the form of Equation 1 can be rewritten as 

f ( I ~ ,  12, I3) = 1 (5) 

J 2  

J3 = 

where 

Also, Equation 5 can be expressed in terms of the 
deviatoric and spherical invariant quantities 

1/6[(~1 - 0"2) 2 -[- (0" 2 - -  (3"3) 2 + (0" 3 - -  (71)23 

(cYl - (7)(c~z - (7)(cy3 - c~) (6) 

1 1 
(7 = ~((Yl + ( 7 2 + ( 7 3 )  = ~ I 1  

Therefore, a strength function is also expressible as 
a function 

f ( I 1 ,  J2, J3) = 1 (7) 

The proposed strength function by Chen and Chen 
[7] followed the invariant of a tensor function of 
a second degree. A two-equation strength criterion, 
using the invariant quantities of Equations 7, is given 
as  

f ( I 1 ,  Jz) = J 2  @ ~ I1 = I2 (8a)  

for the compression-compression region, and for all 
other regions, (compression-tension, tension-tension, 
and tension-compression) as 

f ( I i ,  J2) = J 2 - ~ I 1  + 11 = t 2 (8b) 

where A~ and t 2 are material parameters. 
The strength functions of Equation 8 are a special 

form of linear combination of invariants. The func- 
tions are of quadratic form. The quadratic form has 
been addressed and shown to be inadequate in its 
definition of the failure envelope for the biaxial princi- 
pal stress plane. The cubical forms of the polynomial 
based on tensor function theory were discussed by 
Huang [6, 8]. Tennyson et al. [9], Ottosen [10], and 
Priddy I l l ] .  They suggested that the third degree 
terms are necessary to be included and to explain the 
additional stress interaction relations. The quadratic 
form at best can describe a Conic curve which may not 
yield accurate correlations with experimental data for 
concrete in all four quadrants of the biaxial plane. 

In order to formulate a cubic strength function, the 
invariant quantities of I} 3) must be included. Thus the 
invariant quantities of each degree for an isotropic 
material are 

I (1), first degree: Ii 

I (z), second degree: 12, J2 (9) 

I(3), third degree: 13, I1J2 ,  J3, 12 j1/2 

The system of quantities (Equation 9) represents terms 
which are required to form a cubic strength function 
for isotropic materials. 

A strength function, which is a combination of the 
invariant quantities (Equation 9), has been proposed 
for Concrete, as follows 

f(l}0 = A l i a  + A l l  I2 + Az2J2 -}- Al11I~  + .A12211J2 

+ A F A r 2 r l / 2  -T- 1 z1333d3 ~rn-112~1 J 2  = (lo) 
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where all As are material parameters of the strength 
tensor. These parameters are determined from experi- 
mental strength data for concrete. 

This paper concerns a biaxial stress condition which 
causes failure. The proposed cubic equation (Equation 
10) can be reduced from seven to six material para- 
meters for a biaxial loading condition. Since the third 
degree of the deviator stress invariant (J3) is a combi- 
nation of three other invariants 

J3 = 13 + 5 I ~ J 2  - 13 (11) 

and 13  is zero for the case of the biaxial state of stress, 
the third degree deviator term J3 can be eliminated. 
Thus Equation 10 is reduced to 

A l l l  + A l l I  2 + A 2 2 J 2  + Al11I~ 

A I2 T1/2 1 (12) + A l Z a I I J 2  ~ Z a l 1 2 a l  o 2  = 

The coefficient of the cubic term Az12 in Equation 
10 requires a sign change to completely characterize 
all four quadrants of the biaxial regions of stress. The 
sign of A l l  2 is positive ( + ) in all quadrants, except 
the tension-tension quadrant where the sign is 
changed to be negative ( - ). This change was found 
necessary to allow for a close fit of the failure envelope 
in the tension tension region to experimental data. 

It should be noted that the strength function given 
by Chen and Chen [7] can be shown as a special case 
of the proposed cubic function of Equation 12. 

3. The Strength Envelope Graph 
Equation 12 gives the strength envelope for the biaxial 
states of stress. This envelope represents the strength 
surface on the o~-o2 principal co-ordinate plane. 

The strength envelope of the biaxial states of stress 
must be closed to ensure the stability of the material  
In other words, any radial line from the origin of 
co-ordinates (zero stress state) must intersect the 
strength envelope at one and only one point. A cubic 
strength function, as in Equation 12, with real coeffi- 
cients has three roots on a loading path. At least one 
real root for Equation 12 exists. For  this reason, 
adequate or appropriate weights must be assigned to 
those data points for which the strength coefficients 
(the As of Equation 12) are determined, so that the 
strength envelope forms a closed curve, which has 
only one intersection for any loading line. 

Equation 12 cannot be solved analytically in 
a closed form. Alternatively, an iterative numerical 
analysis is developed using the Newton-Raphson 
technique. Let R denote the ratio of o 2 to O 1 or 
R = o2/cyl = tan 0, where 0 represents the slope of 
a radial loading path. 

With the iteration scheme Equation 12 can be re- 
written as 

F(o~) = E (13) 

where E denotes the residual. This equation yields 

E = Ao~ + Bey 2 + Coy1 -- 1 (14) 

where the coefficients A, B, and C are functions of the 
given values of A~, A u, Auk and R. 
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If the correct value of o1 is substituted into Equa- 
tion 14, the value of E will be zero. On the other hand, 
if an incorrect value of o l  is used, Equation 14 yields 
a non-zero value of residual. A Newton Raphson 
technique is used to obtain the roots for ol .  The 
correction value 

Ao I = - -  [E/(3Acy~ + 2Bcs 1 + C)] (15) 

is determined to improve the estimated value of (sl. 
The new improved value of % is (ol),+1 
-- (ch), + (Aol),  where n denotes the number of iter- 

ations. 
An initial estimate value of o l  is made. This can be 

done by setting o l  equal to (ol)0, the value of the 
uniaxial compressive strength (for R0 = 0). After hav- 
ing obtained a root, (Ol)0, which corresponds to 
R = R 0 = 0 ,  the value of R can be perturbed, 
R1 = Ro + AR. For  this value of R~, iteration is re- 
peated starting from o~ = (ol)0. If AR is not exceed- 
ingly large, then ((sl)0 is contained in the new contrac- 
tion domain of the Newton method, and iteration 
converges quadratically to the root, (Ol)1, correspond- 
ing to R = R1. Successive repetition of this analytical 
continuation approach leads to the solution for 
the strength envelope. The correct solu- 
tion (ol,  o2)a=(,+ 1)AR for the current calculation is in 
the neighbourhood of the previous solution 

(~1, O2)~=nAR. 
In order to ensure that a smooth and closed 

strength envelope is obtained, Equation 12 must yield 
three real roots. After one real root of Equation 12 is 
obtained, the other two real roots can be found as 
follows. By eliminating the first real root obtained (say 
o) from the cubic equation, a quadratic equation is the 
result, i.e. 

A l O ~  + B I 0 1  q- C 1  = 0 (16) 

where A1 = A, B1 = B + Alo,  and C1 = C + BiG. If 
coefficients A1, B1, and C1 satisfy the inequality 

B 2 - -  4 A  1 C  1 ~ 0 ( 1 7 )  

the two remaining roots of Equation 12 will be real. 
Otherwise the other two roots are conjugate complex. 
If the latter case occurs, the strength coefficients A~, 
A u and AUk must be re-evaluated. However, the iter- 
ative process adopted in this paper usually proceeds 
smoothly, the re-examination of the other two roots to 
be real is not necessary. In this way the complete 
strength envelope, as expected, can be obtained easily 
on a graph. 

T A B L E  I Six M a t e r i a l  Coeff ic ients  

C o n c r e t e  c o m p r e s s i v e  s t r e n g t h  ( M P a )  

18.63 30.705 57.615 

A1 - 8.762 - 8.729 - 8.315 

A l i  - 33.923 - 39.995 - 43 .690 

A22 89.000 138.408 164.366 

A l l l  - -  6.165 - 17.500 - 22.948 

A122 - -  110.481 - 2 5 0 . 2 8 5  - 328.088 

A 112 98.745 181.025 226.142 
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Figure 1 (a) Strength surface for concrete with c% = 18.63 MPa, 
A1=--8.54;  A11=-27 .45 ;  Az2= +79,72; A l 1 1 = - 5 . 6 6 ;  
Allz = + 85.04; A122 = -  99.08, ( - -  -) Chen and Chen [7]; 
( - - - )  cubic function. (b) Strength surface in C T region. 
(c) Strength surface in C-C region. 
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Figure 2 (a) Strength surface for concrete with % = 30,705 MPa, 
A s = - 8 . 6 5 ;  A l 1 = - 3 3 . 2 2 ;  A22= +126.25; Al11.=-15.98;  
A~lz = + 160.77; Alz2 = - 228.t3. (- -) Chen and Chela [7]; 
( ) cubic function. (b) Strength surface in C-T region. 
(c) Strength surface in C-C region. 
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Figure 3 (a) Strength function for concrete with cy c = 57.615 MPa, 
A I =  -8.51; Au--34.30; Az2= + 141.72; An1 = -19.51; 
Allz = + 188.40; A12z = 278.07. (- ~ Chen and Chen [7]; 
( ) cubic function. (b) Strength surface in C T region. 
(c) Strength surface in C-C region. 
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4. N u m e r i c a l  E x a m p l e s  
A c o m p u t e r  p r o g r a m  has been developed.  I n c o r p o r a t -  
ing the de t e rmina t ion  of  the s t rength  coefficients and  
the real roo ts  of the cubic  equat ion,  the best  fit 
s t rength  envelope is obta ined .  In  o rder  to verify the 
p r o p o s e d  s t rength  cri ter ion,  the exper imenta l  d a t a  
[12] for concre te  are used for the calculat ions.  

F o r  the case of b iaxia l  stress in the cyt-cy2 plane,  the 
s t rength  coefficients for three different compress ive  
s t rengths  ob ta ined  and  summar ized  in Table  I. 

The  s t rength  envelopes  are  shown in Figs  1, 2 and  3. 
F o r  the pu rpose  of compar i son ,  the results ob ta ined  
by Chen and Chen  1-7] are given in figures. In  par t icu-  
lar  the envelopes  ob ta ined  by  the p r o p o s e d  cubic  
s t rength  cr i te r ion  and  the results  f rom Chen  and  
Chen,  and  the exper imenta l  d a t a  are  p lo t t ed  again  in 
the q u a d r a n t s  (T -C)  and  ( T - T )  in F igs  1-3.  

5. C o n c l u s i o n  
The new p r o p o s e d  cubic  po lynomia l  s t rength cr i te r ion  
(Equa t ion  12) has been c o m p a r e d  with  the exist ing 
exper imenta l  s t rength  d a t a  for the b iaxia l  stress state. 
A favourab le  cor re la t ion  between theore t ica l  and  ex- 
pe r imenta l  results is observed.  

A sys temat ic  and  s t ra igh t fo rward  numer ica l  
m e t h o d  of  de te rmin ing  s t rength  coefficients as well as 
the p lo t t ing  of stress envelope  have been developed.  
This m e t h o d  which is based  on the concept  of  the 
stress tensor  invar iants ,  is also sui table  for eva lua t ion  
of  s t rength  cr i ter ia  for o ther  br i t t le  mater ia l s  as g raph-  
ites and  ceramics.  

The conf igura t ion  of the failure surface, ob ta ined  in 
this paper ,  agrees much  be t te r  with exper imenta l  d a t a  
than  the others,  pa r t i cu la r ly  in the regions of T - T  and  
C - T  of  stress space. 
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